Neural stem/progenitor cells differentiate in vitro to neurons by the combined action of dibutyryl cAMP and interferon-gamma.
نویسندگان
چکیده
Transplantation of neural stem/progenitor cells (NSPCs) is a promising strategy for repair of the diseased/injured central nervous system (CNS); however, controlling their differentiation remains a significant hurdle. This study is aimed at controlling differentiation and specifically at screening exogenous factors to direct NSPC differentiation into neurons in vitro. In this study, adult rat SVZ-derived NSPCs were treated with several factors and screened individually and in combination for changes in cellular morphology, neuronal marker expression, quantitative real-time qRT-PCR, and electrophysiological properties. These in vitro screens showed that of all the different treatments, dibutyryl cyclic AMP (dbcAMP) and interferon-gamma (IFN-gamma) enhanced neuronal differentiation most significantly compared to the 1% fetal bovine serum (FBS) controls. Importantly, the combined treatment of NSPCs with dbcAMP and IFN-gamma promoted greater neuronal differentiation as reflected by an increase in beta-III tubulin expression and morphological differentiation. Interestingly, the neurons that were generated from the NSPCs in vitro in the presence of dbcAMP and IFN-gamma, alone or in combination, responded to exogenous glutamate (Glu), but not gamma-aminobutyric acid (GABA), indicating that these neurons express glutamate receptors. These NSPC-derived neurons may be promising for neural regenerative strategies in the CNS.
منابع مشابه
Isolation and Differentiation of Neural Stem/Progenitor Cells From Subventricular Zone of One Adult Rat
Introduction: In adult mammalian brain, neural stem cells are isolated from both the dentate gyrus and subventricular zone. This study aimed to isolate neural stem cells from adult rat subventricular zone and differentiate them into neurons and astrocytes. Methods: In this study, the whole brain was removed after full anesthesia and creating cervical dislocation. Under a microscope, subv...
متن کاملA Review of the Factors Affecting the Proliferation of Neural Stem and Progenitor Cells
Neural stem cells are undifferentiated cells that are located in limited areas of central nervous system. These cells have proliferation and self-renew ability and can be differentiated into neurons and glial cells. Mature nerve cells do not have proliferative ability; and due to the limited number of nerve stem cells, injuries to the nervous system are not recoverable. The purpose of this revi...
متن کاملRapid Induction of Neural Differentiation in Human Umbilical Cord Matrix Mesenchymal Stem Cells by cAMP-elevating Agents
Human umbilical cord matrix (hUCM) is considered as a promising source of mesenchymal stem cells (MSCs) due to several advantages over other tissues. The potential of neural differentiation of hUCM-MSCs is of great interest in the context of treating neurodegenerative diseases. In recent years, considerable efforts have been made to establish in vitro conditions for improving the different...
متن کاملDehydroepiandroesteron increased proliferation of neural progenitor cells derived from p19 embryonal carcinoma stem cells.
Introduction: The p19 line of embryonal carcinoma cells develops into neurons, astroglia and fibroblasts after aggregation and exposure to retinoic acid (RA). Dehydroepiandroesteron (DHEA) is a neurosteroid, can increase proliferation of human neural stem cell (NSC) and positively regulated the number of neurons produced. This study was initiated to assess the effect of DHEA on neural progenito...
متن کاملDelivery of Epidermal Neural Crest Stem Cells (EPI-NCSC) to hippocamp in Alzheimer\'s Disease Rat Model
Background: Alzheimer’s disease (AD) is characterized by progressive neuronal loss in hippocamp. Epidermal neural crest stem cells (EPI-NCSC) can differentiate into neurons, astrocytes and oligodendrocytes. The purpose of this study was to evaluate the effects of transplanting EPI-NCSC into AD rat model. Methods: Two weeks after induction of AD by injection of Amyloid-β 1-40 into CA1 area of ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stem cells and development
دوره 18 10 شماره
صفحات -
تاریخ انتشار 2009